Video Scan Converter

Description

The CXD2428Q is an IC which generates control signals and performs line interpolation calculations for field memory (CXK1206AM/ATM) in order to perform video signal scanning line conversion. In addition, this IC performs the aspect conversion of the ZOOM mode and WIDE-ZOOM mode in order to support wide screens.

Features

- Video signal (NTSC/PAL) scanning line conversion function
- ZOOM function
(Function to cut top and bottom areas of 4:3 image and expand it to 16:9)
- WIDE-ZOOM function
(Function to vertically compress 4:3 image and expand it to 16:9)
- Operating frequency: 28.6 MHz (typ.)

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

- Supply voltage	VDD	Vss -0.5 to +7.0	V
- Input voltage	VI	Vss -0.5 to $\mathrm{VDD}+0.5$	V
- Output voltage	Vo	Vss -0.5 to $\mathrm{VDD}+0.5$	V
- Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$
- Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating Conditions Supply voltage			
VDD	4.5 to 5.5	V	

Applications

Liquid crystal projectors, etc.

Structure

Silicon gate CMOS IC

[^0]
Block Diagram

Pin Description

Pin No.	Symbol	I/O	
1	SCLK	I	Serial transfer clock
2	SCTR	I	Serial transfer control
3	VoD0	-	Power supply
4	Vss0	-	GND
5	SDAT	I	Serial transfer data
6	TST0	O	Leave open.
7	P0	I/O	I/O port
8	P1	I/O	I/O port
9	P2	I/O	I/O port
10	VBLK	O	Vertical blanking output
11	TST1	I	Fixed to high.
12	FSL1	I	Field identification selection (High: internal, Low: external)
13	FSL2	I	Field information polarity switching
14	TST2	I	Fixed to low.
15	Vss1	-	GND
16	BLNK	I	Output data control (High: black display)
17	TST3	I	Fixed to high.
18	TST4	I	Leave open.
19	TST5	I	Leave open.
20	VOUT	O	Vertical sync signal output
21	HOUT	O	Horizontal sync signal output
22	HBLK	O	Horizontal blanking signal
23	CD7	O	B-Y/R-Y data output (MSB)
24	CD6	O	B-Y/R-Y data output
25	CD5	O	B-Y/R-Y data output
26	CD4	O	B-Y/R-Y data output
27	CD3	O	B-Y/R-Y data output
28	VDD1	-	Power supply
29	Vss2	-	GND
30	CD2	O	B-Y/R-Y data output
31	CD1	O	B-Y/R-Y data output
32	CD0	O	B-Y/R-Y data output (LSB)
33	YD7	O	Y data output (MSB)
34	YD6	O	Y data output
35	YD5	O	Y data output
36	YD4	O	Y data output
37	YD3	O	Y data output

Pin No.	Symbol	I/O	
38	YD2	O	Y data output
39	YD1	O	Y data output
40	Vss3	-	GND
41	YD0	O	Y data output (LSB)
42	BYCK	O	DA converter (B-Y) clock output
43	RYCK	O	DA converter (R-Y) clock output
44	YCK	I	DA converter clock input
45	RDCK	I	Readout clock input
46	REN1	O	Readout memory enable
47	VCR1	O	Readout memory vertical clear
48	HCR1	O	Readout memory horizontal clear
49	INC1	O	Readout memory line increment
50	INC2	O	Readout memory line increment
51	TST6	I	Fixed to high.
52	CSD0	I	B-Y/R-Y lower line data input (LSB)
53	VDD2	-	Power supply
54	Vss4	-	GND
55	CSD1	I	B-Y/R-Y lower line data input
56	CSD2	I	B-Y/R-Y lower line data input
57	CSD3	I	B-Y/R-Y lower line data input
58	CSD4	I	B-Y/R-Y lower line data input
59	CSD5	I	B-Y/R-Y lower line data input
60	CSD6	I	B-Y/R-Y lower line data input
61	CSD7	I	B-Y/R-Y lower line data input (MSB)
62	CFD0	I	B-Y/R-Y upper line data input (LSB)
63	CFD1	I	B-Y/R-Y upper line data input
64	CFD2	I	B-Y/R-Y upper line data input
65	Vss5	-	GND
66	CFD3	I	B-Y/R-Y upper line data input
67	CFD4	I	B-Y/R-Y upper line data input
68	CFD5	I	B-Y/R-Y upper line data input
69	CFD6	I	B-Y/R-Y upper line data input
70	CFD7	I	B-Y/R-Y upper line data input (MSB)
71	YSD0	I	Y lower line data input (LSB)
72	YSD1	I	Y lower line data input
73	YSD2		
74	YSD3		Y lower line data input

Pin No.	Symbol	I/O	
75	YSD4	I	Y lower line data input
76	YSD5	I	Y lower line data input
77	YSD6	I	Y lower line data input
78	VDD3	-	Power supply
79	Vss6	-	GND
80	YSD7	I	Y lower line data input (MSB)
81	YFD0	I	Y upper line data input (LSB)
82	YFD1	I	Y upper line data input
83	YFD2	I	Y upper line data input
84	YFD3	I	Y upper line data input
85	YFD4	I	Y upper line data input
86	YFD5	I	Y upper line data input
87	YFD6	I	Y upper line data input
88	YFD7	I	Y upper line data input (MSB)
89	HCR0	O	Write memory horizontal clear
90	Vss7	-	GND
91	VCR0	O	Write memory vertical clear
92	WEN0	O	Write memory enable
93	ADCK	O	AD converter clock
94	ODEV	I	Field information input
95	HRET	O	Phase comparison output
96	HIN	I	Horizontal sync signal input
97	VIN	I	Vertical sync signal input
98	CKI	I	Write clock input
99	RYOE	O	AD converter (R-Y) enable
100	BYOE	O	AD converter (B-Y) enable

Electrical Characteristics

DC Characteristic (VDD $=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$, $\mathrm{Topr}=-20$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit	Applicable pin
Input, output voltage	Vı, Vo		Vss		VdD	V	
Input voltage 1	VIH		0.7VdD			V	*1
	VIL				0.3VDD		
Input voltage 2	VIH		0.8 Vdd			V	*2
	VIL				0.2VdD		
Output voltage 1	VoH1	$\mathrm{OH}=-2 \mathrm{~mA}$	VDD - 0.8			V	*3
		$\mathrm{loL}=4 \mathrm{~mA}$			0.4		
Output voltage 2	VoH1	$\mathrm{loH}=-4 \mathrm{~mA}$	VDD - 0.8			V	*4
		$\mathrm{loL}=8 \mathrm{~mA}$			0.4		
Output voltage 3	Vor1	$\mathrm{loH}=-6 \mathrm{~mA}$	VDD - 0.8			V	*5
		$\mathrm{loL}=12 \mathrm{~mA}$			0.4	$\mu \mathrm{A}$	
Input leak current	ILII	VIN $=$ Vss or Vdd	-10		10	$\mu \mathrm{A}$	*6
	ILI2	$\mathrm{VIN}=\mathrm{Vss}$	-40	-100	-240	$\mu \mathrm{A}$	*7
	ILI3	$\mathrm{VIN}=\mathrm{V}$ DD	40	100	240	$\mu \mathrm{A}$	*8
	ILI4	VIn $=$ Vss or Vdd	-40		40	$\mu \mathrm{A}$	*9
Output leak current	ILz	Vin $=$ Vss or Vdd	-40		40	$\mu \mathrm{A}$	*10
Current consumption	IDD	V dD $=5.0 \mathrm{~V}$		70		mA	

1 All input pins other than $^{2}$
*2 Pins 1, 2, 5, 96 and 97
$*^{3}$ All output pins other than $*^{4}$ and $*^{5}$
*4 Pins 10, 22, 42, 43, 46 to 50, 89, 91, 92 and 93
*5 Pins 20 and 21
6 All input pins other than $^{7}, *^{8}$ and $*^{9}$
*7 Pins 11, 12, 19 and 51
*8 Pins 13, 14, 16, 17 and 18
*9 Pins 7, 8 and 9
*10 Pin 6

I/O Pin Capacitance
$\left(V_{D D}=V_{I}=0 V, f=1 M H z\right)$

Item	Symbol	Min.	Typ.	Max.	Unit
Input pin capacitance	CIn			9	pF
Output pin capacitance	Cout			11	pF
Input/output pin capacitance	Clo			11	pF

Serial Block AC Characteristics

$\left(\mathrm{VDD}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right.$, Topr $=-20$ to $\left.+75^{\circ} \mathrm{C}\right)$

Symbol	Item	Min.	Max.
ts1	Setup time of SDAT in relation to the rise of SCLK	100 ns	
th1	Hold time of SDAT in relation to the rise of SCLK	100 ns	
tw1	SCLK pulse width	100 ns	
ts0	Setup time of SCTL in relation to the rise of SCLK	100 ns	2 tw1
th0	Hold time of SCTL in relation to the rise of SCLK	100 ns	2 tw1

AC Characteristics

1) Output block
$\left(\mathrm{VDD}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Topr}=-20\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	tpd min	tpd max	Condition
Delay of ADCK in relation to CKI	3ns	28ns	Load 25pF
Delay of HCRO, VCRO and WENO in relation to CKI	10ns	70ns	
Delay of REN1, VCR1, HCR1, INC1 and INC2 in relation to RDCK	6 ns	32ns	
Delay of HOUT in relation to RDCK	5 ns	30ns	Load 20pF
Delay of VOUT in relation to RDCK	7 ns	45ns	
Delay of RYCK and BYCK in relation to YCK	1 ns	22ns	
Delay of YDO to YD7 and CD0 to CD7 in relation to RDCK	5 ns	38ns	
Delay of HRET in relation to CKI	5 ns	32ns	
Delay of BYOE and RYOE in relation to CKI	2 ns	25ns	

2) Input block

Item	ts2	th2
Setup and hold time of CSD0 to CSD7, CFD0 to CFD7, YSD0 to YSD7 and YFD0 to YFD7 in relation to RDCK	9ns	3ns
Setup and hold time of HIN in relation to CKI	3ns	3ns
Setup and hold time of VIN in relation to CKI	Ons	20ns
Setup and hold time of YCK in relation to CKI	20ns	2ns

Description of Operation

1. CXD2428Q Control System

The operation timing of this IC is controlled by serial data.
An 8-bit address and 8-bit data are sequentially transferred from the falling edge of SCTL, and each control data is taken in at the rising edge of SCLK up to the rising edge of SCTL.

2. Control Mode

The following timing and modes are changed by control data:

Variable	Address	Function
H SHIFT	00 H	Horizontal write start timing
V SHIFT	10 H	Vertical write start timing
H PHASE	20 H	Horizontal readout start timing
V PHASE	30 H	Vertical readout start timing
H SZ RD	40 H	Number of readout line dots (0 to 7 bits)
	50 H	Number of readout line dots (8 to 10 bits)
H SZ WR	41 H	Number of write line dots (0 to 7 bits)
	51 H	Number of write line dots (8 to 10 bits)
LN DAT0 to 7	60 to 67 H	Conversion mode address
MD DAT0 to 7	70 to 77 H	Conversion mode data
TOP BLK	AOH	Vertical blanking rise timing
BTM BLK	BOH	Vertical blanking fall timing
LFT BLK	COH	Horizontal blanking rise timing
RGT BLK	DOH	Horizontal blanking fall timing
IODAT	80 H	I/O port output data*1
IOSL	EOH	OUT port select*2
TEST	90 H	$*^{3}$

[^1]
3. Scanning Line Conversion Function

LN DAT (address 6 x) and MD DAT (address 7 x) are data which indicate scanning line conversion coefficients.

There are the following 8 conversion coefficients:
1.67/1.75/2/2.22/2.33/2.67/2.8 = K

$$
K=\frac{\text { number of scanning lines of output signal }}{\text { number of scanning lines of input signal }}
$$

The conversion coefficient equals the ratio of one scanning line to scan lines generated by interpolation. The coefficient can be changed on the screen.
In the WIDE-ZOOM mode, compression and expansion on the screen can be changed by combining these 8 coefficients as desired.
Compression and expansion are carried out by setting the coefficient and the number of switching lines.
The upper 6 MD DAT bits (bits 3 to 8) provide coefficient data.
The lower 2 MD DAT bits (bits 1 and 2) and 8 LN DAT bits provide line number data.
The coefficients and corresponding MD DAT are shown below.

Coefficient	MD DAT	
1.67	MSB000100xx	
1.75	001000 xx	
2.0	000001 xx	
2.1	000000 xx	
2.22	010000 xx	
2.2 .33	011100 xx	
2.67	101000 xx	
2.8	110000 xx	
	110110 xx	

* The interpolation coefficient 2.0 has two modes which are determined by the value of bit 3 .

When bit 3 is 1 , an interpolation line is generated by outputting the same signal as that of the preceding line. This mode realizes images with a higher vertical resolution.
When bit 3 is 0 , an interpolation line is output by averaging signals of the preceding and following lines. This mode realizes images with smoother diagonal lines.

4. DA Converter Clock

RYCK and BYCK, which are YCK halved and phase inverted, are output as D/A converter clocks.

5. Output Control

A black signal is output when BLNK is high.

Mode Setting and Operation

1. Horizontal Write

CKI is input after phase comparison with HSYNC input.
PLL frequency division value is set by H SZ WR (standard 38C (hexadecimal)), and HRET is output.
Write start timing is set by H SHIFT.
An ADCK pulse, which is CKI halved, is output.
The enable pulses RYOE and BYOE for R-Y and B-Y A/D converter are output.

2. Horizontal Readout

In this IC, the readout and write clocks are asynchronous.
The readout 1 H sample coefficient is set by H SZ RD.

An HOUT pulse with a pulse width of 68ck is output from horizontal readout reference pulse HRSP (internal pulse).
Readout start timing is set by H PHASE.
The HBLK pulse set by LFT BLK and RGT BLK is output. However, this pulse does not stop readout, so it has no relation to the actual blanking interval.

3. Vertical Write

Write start timing is set by V SHIFT.
The CXK1206AM/ATM write control pulses VCR0, HCR0 and WEN0 are output.

4. Vertical Readout

The VBLK pulse set by TOP BLK and BTM BLK is output. However, this pulse does not stop readout, so it has no relation to the actual blanking interval.
Readout start timing is set by V PHASE.
The CXK1206AM/ATM readout control pulses VCR1, HCR1, REN1, INC1 and INC2 are output.
The VSP pulse (internal pulse) corresponding to V SHIFT is the vertical readout reference pulse.
A VOUT pulse with a pulse width of $6 \mathrm{H} *$ (* indicates double scan H) is output.

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

100PIN QFP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	QFP-100P-L01
EIAJ CODE	*QFP100-P-1420-A
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER / 42 ALLOY
PACKAGE WEIGHT	1.4 g

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

[^1]: *1 Transfer xxxx. 1 xxx (binary) for PAL (4:3 display) and xxxx.0xxx (binary) for the other systems.
 *² Transfer 00 (hexadecimal).
 *3 Transfer 00 (hexadecimal).

